
N90-27301

A Development Framework for Artificial Intelligence

Based Distributed Operations Support Systems

Richard M. Adler and Bruce H. Cottman

Symbiotlcs, Incorporated

875 Main Street

Cambridge, Ma 02139

(17) s76-asa3

Abstract

Advanced automation is required to reduce costly human operations support requirements for complex

space--based and ground control systems. Existing knowledge-based technologies/lave been used successfully

to automate individual operations tasks. Considerably less progress has been made in integrating and

coordinating multiple operations applications for unified intelligent support systems. To fill this gap, we arc

cotlstructiug SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems. SOCIAL

consists of three primary language -based components defining: models of interprocess communication across

heterogeneous platforms: models for interprocess coordination, concurrency control, and fault management;
and for accessing heterogeneous information resources. DAI application subsystems, either new or existing,

will access these distributed services lion-intrusively, via high-level message--based protocols. SOCIAL

will reduce the complexity of distributed communications, control, and integration, enabling developers to

('onc_lt.rate on the design and functionality of the target DAI system itself.

Introduction

Operational support of complex space-related systems currently entails expensive manpower require-

ments. Human labor costs are particularly high in manned space systems such as the Space Shuttle and the

planned Space Station: in these remote settings, scarce manpower that is dedicated to operational support

cannot be allocated to primary mission objectives. The economic viability of increasingly advanced space

systems hinges on significant increases in operational support automation [Ba88].

Standard engineering formalisn_s such as control theory and operations research can be used to auto-

mate simple control, lnonitoring, and scheduling tasks. However, such methods do not generalize readily

to non routine contexts: assessing and resl)ondiug to system failures; revising plans in the face of unfore-

seen conditions; and similarly difficult cognitive tasks. Over the last several decades, artificial intelligence

(All researchers have addressed these problems by developing symbolic modeling and automated reason-

ing techniques. These methods offer superior flexibility and generality for modeling human analytic and
de('isiotw making processes a_td tbr solving combinatorially complex problems.

Expert systems, model-ba.sed reasoning, and other knowledge-based tools and methods have been

applied to atttomate tasks including fault detection and diagnosis, planning and scheduling, data analysis,

and information storage and retrieval. Several important prototypes systems developed in recent years are

being extended and validated in field tests, in preparation for integration into existing operational support

systems for complex networks [Ad89b,Br89,Ba88,Mu89,Ru88].

Integrating and coordil)atmg multiple knowledge-based applications related to a common domain are
critical problems that have received little attention until recently [Ad89a]. Existing intelligent applications

for operations stlpport rely on system-specific interfaces to users, data feeds, databases, and conventional

automation software. These "standalone" systems also lack access and control facilities for working together

cooperatively on clearly related operations tasks, such as intelligent diagnosis and error-tracking. As increas-

ing numbers of intelligent support tools are deployed together in comraon domains, the need for effective

tools for integrating such systems into a unified cooperative fi'amework will become critical.

This paper describes SOCIAL, a development fi'amework for distributed systems that is intended to

fill tile technology gap. SOCIAL consists of three primary language--based tools: MetaCourier supplies

functionality for interprocess communication and control access across heterogeneous platforms; MetaAgents
defines control models for interprocess organization, data replication, concurrency management, and fault.

231

detectionandrecovery;MetaViewsdefinesa uniformdatamodelfor accessingandcontrollingpersistent
informationstoressuchasdataandknowledgebases.Newandexistingapplicationelementsaccessthese
distributedservicesnon-intrusively,viahigh-levelmessage-basedprotocols.SOCIALtherebyreducesthe
complexityof distributedcommunications,control,andintegration,enablingdevelopersto concentrateon

the design and functionality of the target system itself.

The next two sections of the paper define the central system integration issues that SOCIAL addresses

and review related research. Next,, SOCIAL's architecture and user model are described and illustrated with

a hypothetical operations support example. The remaining sections outline the design and functionality of

SOCIAL's primary language-based subsystems.

Integrating and Coordinating Heterogeneous Intelligent Systems

Several basic problems arise in integrating and coordinating multiple knowledge-based systems related
to a common domain. First, different activities within a domain such as operational support generally depend

on different kinds of knowledge, skills, tools, and methodologies. Knowledge-based automated assistants tend

t,o require correspondingly diverse representation, reasoning, and internal control models. Integrating such

applications thus requires methods for reconciling or accommodating heterogeneous internal architectures.

Second, different tasks within a given domain, while distinctive in many respects, frequently display

important commonalities. For example, network operators and managers share background information

and expertise concerning configuration procedures, although their respective depth and application of such

knowledge may differ. A framework for integrating multiple intelligent applications in a given domain must
facilitate sharing of knowledge resources, including symbolic models of domain structures, behavior, and

operational expertise. Other resources of common utility across applications include interfaces to: users:

databases; target system data feeds and command/control effecters; and conventional software for data

analysis, performance monitoring, and (low-level) automated process control and sating systems.

Third, the integration strategy must be non-intrusive. Existing "standalone" knowledge-based and

conventional programs and data resources represent significant investments in capital equipment, software

development, and safety (i.e., frorn prior validation and verification). It would be prohibitively expensive to

discard such resources or to re-engineer them extensively.

Fourth, applications and resources are generally distributed across heterogeneous software and hardware

platforms connected by one or more (local area) networks. A generalized communications capability is needed

for data exchange and control access across intelligent applications. Moreover this functional capability

should be accessible through a modular, high-level interface: minmfizing the visibility of the mechanics

of' distributed communication fosters maintainability of application code and accessibility for developers
unversed in exotic communication protocols.

The fnal and perhaps most critical problem is establishing cooperation between knowledge-based ap-

plications once they are integrated into a unified framework. Coordination presupposes that applications

somehow know about, one another, their respective capabilities, activities, intentions, and needs. In addition,

coordination also presupposes control and conmmnications models for exchanging requests, commands, sug-

gest.iotas, beliefs, and other information. Again, to facilitate maintainability and extensibility, it is important
that application models and interprocess control mechanisms be partitioned from one another arid from

distributed communication functionality.

Related Work

Distributed Artificial Intelligence (DAI) deals with the solution of complex problems by networks of
autonomous, cooperating computational processes [Hu87]. These processes, often called agents, can be dis-

tributed physically across computational resources and logically across an organizational structure. Typically,

cooperation is mediated by message-passing communication between agents.

DAI research to date, has focused ahnost exclusively on domains in which single organizations of agents

cooperate to solve sinyIe complex tasks [Bo88], including data fusion [Le83] and speech understanding [Bs87].

These "single problem" DAI research efforts have concentrated on developing complex Iocalcontrol structures

for coordinating a network of homogeneous agents to converge to globally consistent problem solutions. For

example intelligent schedulers prioritize local agent tasks for execution according to heuristics or metrics

232

thatgaugeprobableglobalproblem-solvingeffectiveness[Le83].Morecomplexplannerscreate,order,and
filteragenttasksadaptively,basedonhierarchiesof localandglobalproblem-solvinggoals[Ha86].

SingleproblemDAI architectures,whilesuggestive,arenotdirectlyapplicableto theintegrationprob-
lemsdescribedabove.DAI researchhasgenerallyassumed:a singlelogicalorganizationof honaogeneous
complexagents,suchasdistribt,tedblackboards;correspondinglyuniformmodelsforintra andinter-agent
commuuicationandcontrol;andhomogeneoussoftwareandhardwareplatforms[Hu87,Bo88,Ja89].All three
assumptionsareviolated in the complex DAI environments of interest here.

Recently, DAI research has broadened to consider domains such as operations support and battle man-

agement, which encompass collections of related problems of varying complexity. While requisite problem-

solving skills, knowledge and data resources may overlap considerably, the solutions to problems in these

domains may be independent or only weakly dependent upon one another. These characteristics favor

coarser-grained, more loosely-coupled DAI architectures, comprised of individual agents and organizations

of agents that focus on particular problen_s or problem sets disjoint from one another. A useful human

analogy is a legal or medical practice of consultants with different areas of specialized expertise.

Fine-grained scheduling and planning of inter-organization activities tend not to be critical issues in
these domains because agent organizations only depeud weakly on one another. Instead, the critical design

issues are: (a) to integrate agents and agent organizations bounded by different knowledge representation,

reasoning, control, and communication models; and (b) to access and integrate existing conventional software
and data resources.

Initial "multiple problem" DAI applications have failed to address all of the issues raised in the last

section in a generalizable manner. For example, KB-BATMAN integrates three intelligent decision aids

for a lnilitary tactical command. However, the subsystems only conamunicate indirectly, through pairwise

interactions with a shared relational data base and in a fixed, predefiued control pattern [Nu88].

OPERA assists in operations support for NASA's Space Shuttle Launch Processing System [He87,Ad89b].

Its hierarchical blackboard architecture successfully integrates and coordinates heterogeneous expert, sys-

tems, which share external interfaces and knowledge bases [Ad89c]. However, OPERA applications are all

co resident (i.e., physically non--distributed). Knowledge bases are restricted to a commoJ_ representatiollal

model. OPERA also lacks generalized tools for handling errors and accessing data feeds or databases.

Several DAI development tools support integration of intelligent applications with heterogeneous or-

ganizational models. ABE and AGORA provide predefined models for inter-organizational control (e.g.,

dataflow, blackboard, transaction-based) [Bs87,Ba88]. ABE also supplies a high-level graphic editor and

an interface to a commercial relational database management system. AGORA uses a shared-memory com-

munication model, while ABE uses message-passing. Both tools employ virtual machine models that map

onto particular platforms and network communication services (e.g., MACH, Chaosnet). MACE [Ga86], a

message-based DAI testbed incorporates an elegant declarative language for modeling agents' roles, skills,

goals, and acquaintances. However, MACE offers limited tools for coordinating multiple agent organizations

and lacks support for heterogeneous processing platforms.

Architecture of the SOCIAL DAI Development Framework

SOCIAL is a generalized framework for developing both single and multiple problem DAI applications.

Its architecture, shown in Figure 1, consists of a layered, partitioned set of system building blocks and

development interfaces.

Developers use the high-level Application Interface to access predefined object classes, called Type,.

Each Type represents a different, generic DAI control skeleton for intelligent agents or agent organizations.

Organization Types are skeletons for agents whose logical functions are to coordinate a collection of agents

(i.e., organizational members), and to manage their communications with outside agents and organizations.

DAI systems are constructed by instantiating (or specializing and instantiating) suitable agent Types and

embedding application elements within those "wrapper" objects. Application elements access the distributed

services of its embedding Type instance through discrete high-level message-based Pro_.oeols. A given DA1

system can integrate multiple heterogeneous agents and agent organization Types.

Agent Types are structured as an inheritance hierarchy of object classes, whose initial subclasses are

233

shownin Figure 2. Discreteapplicationelements(e.g.,knowledgesources),areembeddedill basicl{e-
ceptionistagentskeletons.Specializedsubclassesof theReceptionist, called Gateways, are instantiated for

embedding protected knowledge or data bases. The Manager Type is the root Agent Organization class.

Manager subclasses include variant blackboard architectures and other organizational models such as have
been developed in single problem DAI research. These Types are described further in the MetaAgents section

of this paper.

Agent and Agent Organization Classes I

I MetaCourler I

Network, Processor, and Operating System Platforms I

Figure .1: SOCIAL Architecture

MetaCourler Agent

Receptionist Manager

Database Knowledge Base Distributed Hierarchical
Gateway Gateway Blackboard Distributed

Blackboard

Figure 2: Agent Types in SOCIAL's Application Library

Each Type is comprised of other kinds of objects called Models, which define different aspects of dis-

tributed behavior. Models are accessed through a separate Agent Development Interface. At present,

SO(:IAL describes three types of Models, which are represented in terms of compilable object-oriented lan-

guages. The MetaCourier language, SOCIAL's be_sic substrate, defines a class of Models for distributed

comnmnications. MetaAgents defines a class of intra- and inter-process control Models for agent and agent

organizations. The MetaViews language defines a class of Models for accessing different models of data and

knowledge. Both languages exploit MetaCourier's distributed communication services.

hi effect, developers use the Application Interface to access a li_rartj of predefined DAI building blocks.
Most of these objects can be customized by setting mode switches that override default, services such as

error-handling behavior. Applications may sometimes require service options or new behaviors not provided

by the library of existing agent Types. In these situations, the dedicated languages cornprising the Agent

Development Interface can be used to extend the library by defining specialized Models and combining them
t.o create new ageut Type subclasses.

Operations Support using SOCIAL

A hypothetical example of a DAI operations support system based on SOCIAL is illustrated in Figure

3. The target domain is a distributed ground control network such ms a launch processing system, consisting

of user consoles, computers, data links, ground support equipment, and embedded sensors. Sensor monitor

programs would be realized as Receptionist agents, with asynchronous or synchronous communication Mod-

els, depending on individual polling requirements. A relational database for tracking problems would be

integrated using a Gateway' agent. A Blackboard-based data fusion Manager Agent would coordinate sensor
polling, measurement interpretation, and auomaly detection. A diagnoser agent would generate and test

234

fauh,hypothesesandissuerecoverysuggestionsto anExecutiveManagerAgent,Operationsuserswould
viewongoingactivitiesandissuequeriesor commandsto theExecutiveanddatabaseGatewayagents.

User Interface Agent IJ _tr _ I

' |l, Error-TracklngDBJ{

1 /Ioiagn°ser Agent J--,-_ateway Agent J

t xocu,,vo.0en,i_ /
I Data Fusion AgentI

f.oo,,o,l.on,,orl[.on,,orI [Oon,torIAgent 3 Agent lb Agent la Agent 2a

Sensor-1 b

I DataFeed _ f Sensor-2a _
Network Op. Sys.J Subsystem [,.Subsystem 2)

Figure .3: Hypothetical DA[System for Operation Support based on SOCIAL

The remaining sections describe SOCIAL's underlying languages and Models, which enable Agent Types

to provide distributed services for integrating and coordinating DAI application elements.

MetaCourier: A Language for Distributed Conununieation

Advanced operational support architectures for space and ground control systems will have to integrate
_qnerging hardware and software technologies with existing applications (both conventional and intelligent),
interfaces, languages, and hardware platforms. Cost and reliability concerns dictate an integration strategy

that minimizes intrusive modifications to existing system elements and allows them to be maintained and

enhal_ced independently. Moreover, this strategy should maximize portability, to enable migration of system

COml_onents to newer, high performance processor platforms. Technology transfer and management risks are

also minimized, by reducing adjustments to training and operational procedures, and standdowns for system

replacement and validation.

MetaCourier is a high--level object-oriented language for distributed communication that is designed t,o

achieve these system integration objectives [Pa88]. The leading alternative communication model, based on

the Remote Procedure Call (RPC) facility, is asymlnetric and pairwise-restricted: an active client process
invokes one (and only one) passive server process, which responds as required. In contrast, MetaCourier

services provide fully peer to peer transparent communication between distributed applications.

The MetaCourier language defines four major object classes, Agents, Environlnents, Hosts, and Mes-

sages. Agents are intelligent, self-contained, autonomous processes. Host object attributes characterize the

structure of network nodes: their processors, operating systems, peripherals, network types and physical

addresses. Environments depict, software dependencies for Agents, such as language compilers, and editors.

Environments can be specialized to enhance communication performance for particular data types (e.g.,

sparse arrays), by defining custom encoding and decoding methods.

A MetaCourier Message defines the specific distributed communication behavior used by an Agent

when it executes in an Environment. Both asynchronous and synchronous message-passing Models are

available. An application Agent communicates with another by formulating a Message using the relevant

Model protocol, for example:

Asynchronous :

Synchronous :

(Tell :agent sens0r-monitor :sys Symbl "(poll measurement-Z)"

(Tell-and-Block :agent user-interface :sy, Rac2
"(trigger-al.ann sensor-I windo_-2)")

235

MetaCourierhandlesmessagerouting,transmission,anddeliveryservicestransparentlyto tile source
andtarget,agents'associatedapplications.Conceptually,theAgents'associatedHostsandEnvironments
at1asfiltersthat manageprocessingandnetworkdependenciesm thecommunicationprocess(cf Figure
,t). Distributed control is achieved in a DAI application when Agents autonomously invoke other Agents.

(:oncurrency is realized when nmltiple Agents are invoked simultaneously (across multiple Hosts).

Environment Host Host Environment

_ _ Messages ___

Figure .4: Operational Model of MetaCourier Communication Process

The openness of MetaCourier's communications architecture distinguishes SOCIAL from other DAI

development frameworks, such as ABE, AGORA, MACE, ERASMUS [Ja88], and AF [Gr87].

Status: MetaCourier can be used as a standalone development language. It is currently available for:

ANSI C and Common LISP programming languages; MS-DOS, UNIX, VMS, Macintosh Multifinder, and

Lisp Machine operating systems; PCs, Macintoshes, Lisp Machines, VAX, Sun, and HP workstations. It

currently utilizes TCP/IP on Ethernet and Appletalk protocols, but is extensible to other OSI-compatible
network protocol suites.

MetaAgents: A Language for Agent Control and Coordination

Tile MetaCourier language offers a high level interface that conceals the complexity of interprocess

comnlunication ill distributed heterogeneous computing environlnents. Additional development capabili-
ties are needed for internal process control, peer to peer inter-process coordination, and other distributed

control services. MetaAgents is an object-oriented language for defining control Models to address these
requirements.

The basic kernel MetaAgents Model protocols provide the equivalent of a traditional operating system's

executive process control operations: agent creation, duplication, migration, and deletion. These protocols
provide development-level options for specifying how to control Type inheritance behavior across distributed

environments. Tile creation and copy protocols are critical because they allow new Agents to be defined
dynamically at runtime.

MetaAgents Models support high-level message and concurrency management services. MetaCourier

makes minimal assumptions about the ordering behavior of the low-level network protocols for message

delivery, providing protocols to enforce simple message ordering schemes such as First In First Out. (FIFO)

delivery at particular nodes. MetaAgents Models define polices that use such guaranteed orderings to satis_'
synchronization requirements of particular DAI applications [Pe89].

For example, MetaAgents supports an "atomic" broadcast protocol, which guarantees a globally in-
variant ordering of message delivery across all networks nodes. Atomic broadcast requires multiple phases

of message exchanges; it should therefore only be used selectively, in situations where partial orderings of

many-to-many agent interactions are insufficient and where lower performance can be tolerated. Atomic

broadcasts are useful for maintaining consistency in transaction-oriented applications, such a,s where nmltiple
agents send messages that operate on distributed replicated data.

MetaAgents defines other complex communication Models [Bi89] using a Group-based conversation

abstraction: protocols are defined for agents to join a Group, to converse with other Group members via

directed messages or broadcasts, and to depart, tile Group and the conversation. For example, a reliable

Group broadcast protocol propagates information from one agent to other Group members such that all
operational agent.s receive this information despite failures m the syst, em.

236

Groupsandbroadcastsareveryusefulfor replicatingdatafor concurrencyandfault management.
Bottleneckscausedbycentralizedcontrolcanbealleviatedbydistributingtaskelementsamongagentsthat
operateconcurrentlyonreplicateddataandcontrolstateinformation.Similarly,data.replicatedalongt.ime-
criticalcontrolpathscanhelpto compensateforcommunicationdelaylatenciesin distributednetworks(due
topacketlossandnodelodevariances)thatleadto violationsofrealtimeprocessingconstraints.Replicated
datacanalsobeusedto maintainredundantcopiesof criticalstateinformationto facilitaterecoverycontrol
strategiesforfaulttolerantbehaviorindistributedsystems.Groupprotocolsalsoensureorderlyreintegration
of agentsintoDAIapplicationswhendroppednetworklinksarerecovered.

ThefollowingsectionsdescribebasicSOCIALagentTypestoillustratetherolesof MetaAgentsModels.

Receptionistsand Gateways
TheReceptionistis therootor kernelMetaAgentsTypefbr singleagents.It specifiesbasiccommu-

nicationservicesthroughMetaCourieror morecomplexMetaAgentsprotocolsandGroupprotocols,iX
Receptionist agent is responsible for serializing concurrent requests, for scheduling access to its embedded

application, and for detecting and recovering from possible error states that the application might enter. Re-

ceptionists manage the control transactions that implement fault tolerant behavior; agents departing from a

Group due to failures of nodes or network links and agents rejoining a task processing conversation following

network recovery. Receptionists can also be designed to manage security functions, for restricting access to

specifc application elements.

Databases and application programs are often constructed using commercial development tools such
as DBMSs and A1 shells. SOCIAL simplifies the design of Receptionists in such cases by abstract.ing the

application independent aspects of tools' control and data interfaces into specialized, predefined Reception-

ist subTypes called Gateways. Gateway agents supply predefined interface protocols for formulating queries

or commauds, concealing variations of syntax across comparable tools. Accessing a resource or program

Ihrough a (;ateway reduces to defining the application--specific aspects of tile interface, in particular, for-

mulating queries or commands whose argmnents reference particular objects or attributes. Gateways for AI
development shells must provide bidirectional interfaces for control a,s well as for data, so that intelligent

applications can initiate queries or colnmands to other agents in the context of their own environments.

Manager

The distributed services provided by Receptionists enable application agents to interact through a

"loosely-coupled" model of cooperation. More sophisticated control is often needed to coordinate a set of

agents working together on one or several closely related tasks. The MetaAgents Manager and associated

subTypes provide the requisite organizational control functionality.

A Manager regulates all communication between the agents within an organization via directed and

broadcast protocols, providing a shared memory and a locus for centralized oversight and control. The

Manager agent also mediates communication between external agents and organizational members, such

as requests for data or services. To accomplish these various routing functions, the Manager maintains a
"database" describing member agents and their relationships. Managers can be replicated to avoid processing

bottlenecks and single point failures, although this entails additional control and performance overhead.

Specialized Manager subTypes will realize specific tightly-coupled distributed control frameworks, such

as blackboard architectures [Ni86,Ja89]. The Manager Type does not restrict membership based on agent

Typ, _. This means that organizations can be arbitrarily complex. In particular, SOCIAL supports hierarchi-

cal organizations, in which a Manager coordinates other Managers. Thus, SOCIAL's library of organization

Types can incorporate or subsume popular single problem DAI architectures, as well as hierarchical (nmltiple

problem) frameworks such as OPERA. More important, SOCIAL permits different elements of a complex

DAI system _o be implemented using dif-Jerent agent and agent organization Types. MetaCourier provides
the substrate or "backplane" of distributed comnmnication services that enables high-level integration and

coordination. Developers can exploit SOCIAL's support of heterogeneity to implement application elements

using the most appropriate strategies for control and cooperation.

Status: The MetaAgents language design specification has been finished. Kernel process control protocols

have been implemented. Initial control Models, Gateways, and agent organization Types will be completed

by mid- 1990.

237

MetaViews: A Language for Accessing Heterogeneous Data Resources

SOCIAL's Gateway agent Type facilitates non-intrusive integration of databases and knowledge-based
systems implemented using standard, commercial DBMSs and A1 shells. Gateway interfaces and services for

distributed conununication and process control derive from MetaCourier and MetaAgents Models. Additional
services are required for formulating and processing queries and commands. MetaViews will address this

problem through interface Models that are specific to particular DBMS or AI shells. These Models will be

comprised of two elements: high-level interface protocols and services for translating between the protocols

and the tool language in question. The protocols represent. SOCIAI,'s equivalent to a programming interface
library,.

Figure 5 depicts the functions performed by a MetaViews interface Model. The block on the left

r_'prosonts an al)plicat.ion agent A embedded in a Receptionist; tile right hand box represents a database or

kt_owledge--based system B embedded in a suitable Gateway. A issues commands for controlling or accessing
B m terms of the functional protocols. A's Receptionist translator services convert those commands into an

efficient canonical data represention, which are dispatched via MetaCourier. B's Gateway translator services

converts canonical commands into the tool specific language using the (invertible) protocol library'. A's

Recoptiouist and B's Gateway use MetaAgents services to manage concurrent messages.

Receptionist Agent A

Application

MetaViews Interface
Protocol Library

MetaViews
Translation Services

MetaAgent
Control Services

MetaCourler
Com m unicationServices

Gateway Agent B

DB or KBS

MetaViews Interface

Protocol Library

MetaViews
Translation Services

MetaAgent
Control Services

MetaCourier
CommunicationServices

[" I
Commands and data in

Canonical Representation

Figure .5: Operat.ional Model of MetaCourier Communication Process

MetaViews technology is extensible to integrate other kinds of information system tools, such spread-
sheets, computer-aided design tools, data analysis libraries, and data acquisition software.

Status: The MetaViews language design specification has been completed. Initial versions of MetaViews

[{.eceptionist and (;ateway Models for ANSI C and (f:Olnlnon Lisp for Oracle and Sybase relational dalCd_a.-,¢,_,.
KEg _md (!lAPS AI shells will be co,nplete by mid--1990.

Conclusions

Operations support of complex systems exemplifies "multiple problem" Distributed Artificial Intelligence

(DAI) domains. These domains are distinguished by their heterogeneity. Domain problems vary in difficulty

and degrees of interdependence. Application software and data resources can differ substantially with respect

to structure, complexity, intelligence, and interfaces. Software and hardware platforms are also typically'

heterogeneous. The central design concerns in such domains are: (a) to integrate these diverse elements

non-intrusively; and (b) to supply flexible coordination models to allow intelligent applications to interact
cooperatively as a coherent, unified system.

SOCIAL is a generalized tool for developing DAI systems. It simplifies design and maintenance by

enforcing a clear separation between application-specific functionality and distributed services. Application

elements access services through high-level interfaces to predefined agent and agent organization Types. SO-

CIAL's interfaces reduce complexity by concealing the mechanics of distributed communication and control

238

acrossheterogeneouscomputingenvironments."Standalone"applications,bothintelligentandcouventional,
anddataresourcescanthusbeintegratednon-intrusively,Moreover,SOCIAl,allowsintelligentapplications
basedondifferentinternalcontrolschemesto beintegratedwithina singlecomplexDA1system.

SOCIAl,partitionsdistributedservicesintodistinctobject-orientedModelsfor: distributedcommuni-
cation(thesubstratefor all higher-levelservices);controlservicesfor managingprocessesandconcurrency,
andfor coordinatingagentsonparticular"singleproblem"DAI applications;anddatatranslation.The
SOCIAI,architectureisopenandextensible,withseparatedevelopmentinterfacesto thelibraryof generic
agentTypesandto thelanguage-ba_sedModelsthatcomprisethem.Thesehigh-leveltoolsfreedevelopers
to concentrateonessentialDAIarcbitecturalissues,suchasdesigningstrategiesforcoordinatingintelligent
Sll])SySLe[I IS.

A eknowNedgment s

The development of MetaCourier has been sponsored by the Department of Defense, U.S. Army Signal

Warfare Center, under Contract No. DAAB10-87-C-0053. The development of SOCIAL has been sponsored
by NASA under contract No. NAS10-11606.

References

[Adbga] R. Adler, B. H. C;ottman. '" A Development Framework for Distributed Artificial lmeIligence.'"

Proceedings Fifth ConJerence on AI Applications, Computer Society oJ the IEEE, Miami, FL, March

6-I6, 1989.

[Ad89b] R. Adler, A. Heard, and R. B. Hosken. " OPERA- An Expert Operations Analyst for A Distributed

Computer Network." Proceedings A nnual A I Systems in Government Con_erence_ Computer Society

o/the IEEE, Washington, D.C., March _7-31, I_89.

[Ad89c] R. Adler. "A Distributed Blackboard Arhictecture for Integrating Loosely-Coupled Knowledge-

Based Systems." Intelligent Systems Review. Association for Intelligent Systems Technology, E.
Syracuse, NY, 1989.

[Ba88] S.E. Bayer, R. A. Harris, L. W Morgan, J. F Spitzer. A Review o] Space Station Freedom Program

Capabilities for the Development and Application of Advanced Automation. The MITRE Corp.

Technical Report MTR-88D00059, McLean, VA, December, 1989.

[Bi89] K. Birman et. al. The ISIS System Manual VI._. Depa.rtment of Computer Science, Cornell Uni-

versity, Ithaca, NY, June 1989.

[Bo_';8] A.II. Bond and L. Gasser, eds. Readings in Distributed Artificial Intelligence. Morgan-Kaufinann,
San Mateo, CA, 1988.

[Br89] M.R. Barry. "PXI: A Space Shuttle Mission Operations Knowledge-Based System Project." Pro-

ceedings Annual AI Systems in Government Con]erence, Computer Society of the IEEE, Washing.

ton_ D.C', March _7-_I, 1:_8_.

[Bs87] R. Bisiani, F. Alleva, F. Correrini, A. Forth, F. Lecouat, and R. Lerner Heterogeneous Parallel

Processing: The Agora Shared Memory. Carnegie-Mellon University, Computer Science Department.
(:MU-CS-87-112. March 1987.

[ErS0] L.D. Erman, E. Hayes-Roth, V.R. Lesser, and D.R. Reddy "The Hearsay-ll Speech Understanding

System: Integrating Knowledge to Resolve Uncertainty." A CM Computing Survey, t& pp. 219-_53_
1986.

[Ga86] L. Gasser, C. Braganza, and N. Herman. MACE: A Flexible Tesibed lor Distributed AI Research.

Distributed Artificial Intelligence Group, Computer Sci. Dept. USC, 9-Aug-1986.

[Gr87] P.E Green. "AF: A Framework for Real-Time Distributed Cooperative Problem Solving." in [Hu87].

[Ha86] B. Itayes-Roth. "A Blackboard Architecture for Control." Artificial Intelligence, VoL262, pp.251-

21 Mar, 1986.

[Ha88] F. Hayes-Roth, L. D. Erman, S. Fouse, J. S. Lark J. Davidson. "ABE: A Cooperative Operating
System and Development Environment." in [Bo88], pp. 457-489.

239

[He87]

[Hu87]

[Ja88]

[Ja89]

[Le83]

[Mu89]

[Ni86]

[No8S]

[Pa88]

[Pe89]

[RUSS]

A.E. Heard. "The Launch Processing System with a Future Look to OPERA." Acta Astronautica,
IAF-87-215.

M. N. Huhns, editor. Distributed Artificial Intelligence. Morgan-Kaufmann, Los Altos, California,
1987.

V. Jagannathan, R.T. Dodhiawala, and L.S. Baum " Boeing Blackboard System: The Erasmus

Version." International Journal of Intelligent Systems, Vol 3 Number 3, Fall 1988, pp. 281-_94.

V. Jagannathan, R.T. Dodhiawala, and L.S. Baum, eds. Blackboard Arhictectures and Applications.

Academic Press, San Diego, CA, 1989.

V. R. Lesser and D. D. Corki]l. "The Distributed Vehicle Monitoring Testbed: A Tool for Investi-

gating Distributed Problem Solving Networks." AI Magazine, Fall 1983 pp. 15-33.

J. F. Muratore, T. A. Heindel, T. B. Murphy, A. N. Rasmussen, R. Z. McFarland. "Applications

of Artificial Intelligence to Space Shuttle Mission Control." Proceedings Conference on Innovative
Applications of AI, Stanford, CA, March, 1989, pp 15-£_.

H.P. Nit "Blackboard Systems: The Blackboard Model of Problem-Solving and the Evolution of

Blackboard Architectures." AI Magazine, pp. 38-53, Summer 1986.

R.O. Nugent and R. W. Tucker. "An Architecture for Integrating Distributed and Cooperating
Knowledge-Based Air Force Decision Aids." Second Annual Space Operations Automation and

I£obotics Workshop (SOAR 88,), Dayton, Oh, July 1988.

R. C. Paslay. metaCourier: A Language For Distributed Heterogeneous Communication. Symbiotics
Inc. Cambridge, MA March 1988.

L.L. Peterson, N.C. Bucholz, and R.D. Schlichting. " Preserving and Using Context Information In

Interprocess Communication." ACM Transactions on Computer Systems, 7,3, August I989.

K. S. Rubin, P. M. Jones, C. M. Mitchell, T. C. Goldstein. "A Smalltalk hnplementation of an

Intelligent Operator's Assistant." Proceedings Object-Oriented Programming Systems, Languages,
and Applications, September, 1988, pp 234-_.47.

240

